ealib

User’s Manual

Version 0.2.4

Author:
Andreas Rummler
Date:
January 7, 2002

Contents

List of Figures 5
List of Tables 6
1 Introduction 7
1.1 Definitions. o
2 Installation 8
2.1 RequIremMentS o o 8
2.2 Installingthe Binary Release 8
2.3 Installingthe Source Release 8
3 Evolutionary Algorithm Foundations 10
4 Represention of Possible Problem Solutions 11
4.1 CreatingIndividuals. 11
4.2 Predefined Chromosome TYPesS o i e 12
4.3 Creation of new Chromosome TYPES o v it it e e e e 13
5 Score Evaluation 16
5.1 Introducingthe Term Score 16
5.2 Comparing SCOMES o o o o e e e 16
5.3 Score Assignment and Individual Comparison Lo L 17
5.4 Creation of User-Defined Scores 18
5.5 Evaluationof Individuals 19
6 Fitness Scaling 20
6.1 LinearScaling e 20
6.2 ReciprocalScaling 20
6.3 LogarithmicScaling. 20
6.4 Exponential Scaling 21
6.5 Linear Ranking Scaling 21
6.6 Non-linear Ranking Scaling 21
7 Selection Mechanisms 22

8 Recombination of Individuals

8.1
8.2
8.3

8.4
8.5

Recombining Bitvectors
Recombining Real or Integer Valued Variables
Recombining Arrays o
8.3.1 Multipoint Array Recombination.
Recombining Lists e
Recombining Strings

9 Mutation of Individuals

9.1
9.2

9.3

9.4

9.5

Mutating Bitvectors
Mutating Real or Integer Valued Variables
9.2.1 FloatStepMutation
9.2.2 FloatRangeMutation
9.2.3 FloatRelativeRangeMutation o
MUtAtING AFTAYS . . .« o o e e e
9.3.1 ReverseArrayMutation
0.3.2 RotateArrayMutation
9.3.3 ScrambleArrayMutation
9.3.4 ShiftArrayMutation
9.3.5 SubstitutionArrayMutation L
0.3.6 SwapArrayMutation
Mutating ListS o e
9.4.1 ReverseListMutation
9.4.2 ScrambleListMutation L
9.4.3 SwapListMutation
Mutating Strings L e

10 Algorithm Creation
10.1 Individual Streams
10.2 Algorithm Components o o e

10.2.1 SOUICES . . . v v o e e e e e e e e e e
10.2.2 SinKS . . . e
10.2.3 CONNECLOrS v v o e e
10.2.4 FOrkS e
10.25 MEIQEIS o o
10.2.6 Conduits e e

10.3 Turning Genetic Operators into Algorithm Components

10.3.1 |Initialization

11 Debugging Facilities

12 A Look into the Future

32

33

13 License Issues

13.1 The GNU General Public Licence

13.1.1 Preamble

13.1.2 Terms and conditions for copying, distribution and modification
13.1.3 Appendix: How to Apply These Terms to Your New Programs

13.2 ealLib commercial license
Bibliography

Index

34
34
34
35
38
39

40

43

List of Figures

4.1
4.2

9.1
9.2
9.3
9.4
9.5
9.6

Representation of a Problem Solution.o 11
Structure of the genetic representationused ineaLib. 12
Reverse Array Mutation. L e 25
Rotate Array Mutation. L 26
Scramble Array Mutation. 26
Shift Array Mutation. 27
Substitution Array Mutation. L 27
Swap Array Mutation. e 27

List of Tables

1.1 ValidJavadatatypes. o

Chapter 1

| ntroduction

Optimization problems can be found in a large number of areas. Most of these problems have a huge search space,
so finding an optimal solution in a analytical way is impossible in most of these cases. The optimization task must
be tackled in a different way. Several approaches and algorithms exist, both deterministic and non-deterministic.
A popular stochastic approach are algorithms belonging to the family of Simulated Annealing. Another from
the group of non-deterministic ones are algorithms based on simulated evolution. This kind of algorithms are

discussed in this introduction.

1.1 Definitions

To provide correct informations in this manual, some definitions are necessary. Throughout eaL.ib five data types
are used. The range of values are defined according to the Java Language Specification ([GJS96]). The definitions
are given in table 1.1 below. If one of these datatypes is used in this manual the appropriate range of values is

valid.

| Type Minimum Negative | Maximum Negative | Size [bit] |
boolean n/a -1 1
int -2147483648 -1 32
long -9223372036854775808 -1 64
float —3.40282347 - 10°8 —1.40239846 - 10— 32
double —1.7976931348623157 - 1098 | —4.94065645841246544 - 10324 64

| Minimum Positive | Maximum Positive
boolean n/a 0 1
int 0 2147483647 32
long 0 9223372036854775807 64
float 1.40239846 - 10—% 3.40282347 - 1038 32
double | 4.94065645841246544 - 10—324 1.7976931348623157 - 10308 64

Table 1.1: Valid Java data types.

Chapter 2

| nstallation

This chapter briefly describes the installation procedures of the binary and the source release.

2.1 Requirements

Before installing the eaLib-Package, make sure that the following requirements are met:

« Java Development Toolkit 1.3 [JDK], JDK 1.2.2 should also work, but has never been tested
« Java Serialization to XML [JSX]

Log4J Logging Toolkit [Log]

» Xerxes Java Parser [Xer], currently unused, but future XML handling will rely on this parser

(optional) Ant [Ant], for building the source release

« (optional) JUnit [JUn], for building the source release and running test cases

2.2 Installing the Binary Release

To install eaLib first depack the archive to a directory of your choice:

mkdir java

mv ealib-<version-number>_tar.gz java
gunzip ealib-<version-number>_tar.gz
tar xvf ealib-<version-number>._tar

This creates a subdirectory called ’ealib’. All necessary jar-Archives can be found in the ’dist’ subdirectory. Now
simply add all jar-Files to your CLASSPATH environment variable. Now it is possible to compile own programs
or run the examples.

2.3 Installing the Source Release

To compile and install the source release depack the archive to a directory of your choice:

mkdir java

mv ealib-src-<version-number>._.tar.gz java
gunzip ealib-src-<version-number>_tar.gz
tar xvf ealib-src-<version-number>.tar

This creates a subdirectory called "ealib’. For building ealLib it is required to install all the mentioned software
packages from above. Please refer to the documentation of the tools for installation instructions. As a build sytem
the tool Ant is used. Ant relies on a build file ("build.xmI”) which is included in the eaLib-distribution. The build
file defines several build targets. To compile eaLib invoke ant on the target compile’:

ant compile

For building the examples and the test cases separately, the targets ’examples’ and ’test” exist. The compiled
classes are put in the a subdirectory called ’classes’. The APl documentation can be generated with invoking
ant on the target ’docs’. An overview over existing targets can be received by calling ant with the parameter
’-projecthelp’:

ant -projecthelp

Chapter 3

Evolutionary Algorithm Foundations

To be written

10

Chapter 4

Represention of Possible Problem Solutions

The first step when implementing an evolutionary algorithm is thinking about an appropriate representation of a
solution to the problem. In this chapter we will discuss how this step can be done and how a possible implemen-
tation can look like.

In biology the genetic information of a creature resp. an individual is contained in its chromosome set. There-
fore the chromsomes set is a kind of construction plan for a creature of that species. So an individual used in
an evolutionary algorithm also contains a set of chromosomes*. If an individual is a possible solution to our
optimization problem, this set must be the representation of this problem.

In the first genetic algorithms that were developed by Goldberg [Gol89] and Rechenberg/Schwefel [Rec73]
binary string or real-valued numbers were used for representing potential solutions of a given optimization prob-
lem. As an example let’s take a look at the a threedimensional function given in figure 4.1. Let’s imagine this
function is to be minimized. With other words we have to find two values for = and y so that f(z,y) gets as
small as possible. A possible solution to this problem would be for instance x = 2.0 and y = 3.5. A genetic
representation for this potential problem solution is also given in figure 4.1. The value of z is assigned to a first
chromosome and the value of y is assigned to the second chromosome. So the genetic representation contains
two chromosomes each holding a float number (or a double if more precision is required).

f(x,y) = X2 + y?
Chromosome 1 Chromosome 2

Figure 4.1: Representation of a Problem Solution.

Unfortunatly the genetic representations used in traditional algorithms are often neither very descriptive for
the human eye nor very flexible. There is no reason not to use other data types for the task of expressing a
problem solution. Therefore eaLib uses a more generic model. Each individual can contain an arbitrary number
of chromosomes of various data types (figure 4.2).

4.1 Creating Individuals

In this section we learn how to create individuals. An overview over the class structure gives the UML diagram
in figure ??.1t can be seen that an instance of the class Individual contains exactly one instance of the class

INote that some people refer to the term gene in this context instead of chromosomes. The meaning is the same, athough in my opinion
it isnot exact, so | will refer to the term chromosome

11

Individual

ChromosomeSet

‘ Chromosome A ‘ Chromosome B | Chromosome C ‘ 8

X

\

<n> chromosomes of arbitrary type

Figure 4.2: Structure of the genetic representation used in eaL.ib.

ChromsomeSet. The chromosome set itself can contain an arbitrary number of chromosomes, which all have
specific type. The types that are already provided by eaLib are enumerated in the next section.

The creation of an individual for the example from the last section can be seen in listing XXX.

/I create a chromosome set

ChromosomeSet mySet = new ChromosomeSet();

/I add the chromosomes with initial float values

/I add the first chromosome to slot O in chromosome set
mySet.add(new FloatChromosome((float) 2.0);

/I and add the second chromosome to slot 0 in chromosome set
mySet.add (new FloatChromosome((float) 3.5);

/I finally create the individual

Individual mylndividual = new Individual (mySet);

Listing 4.1: creation of an individual

It is quite an easy task to create individuals for the given problem. First an instance of the class Chromo-
someSet called mySet is created. Then two chromosomes holding float numbers are put into the chromosome set.
Finally the individual mylIndividual is created.

Every chromosome set defines the toString() method, which calls all toString() methods of all contained
chromosomes. The textual representation of the chromosomes is concatenated without whitespaces and separated
by commas. The whole string is enclosed by parantheses. List objects are enclosed by brackets and list elements
are separated by commas. Calling the toString() on our individual would produce the following output:

{2.0,3.5}

4.2 Predefined Chromosome Types

This section gives a short overview over all predefined chromosome types that come with eaL.ib.

» ArrayChromosome
Chromosome for arrays of all types. This can be arrays of primitive data types as well as arrays of objects.

 ArrayListChromosome
Chromosome holding a single array list.

* BinaryStringChromosome
Chromsome of type binary string. There is a special class BitVector to provide the possibility to implement
individuals using the traditional binary string representation.

» DoubleChromosome
Chromosome of type double.

12

 FloatChromosome
Chromosome of type float.

* IntegerChromosome
Chromosome of type integer.

« LinkedListChromosome
Chromosome containing a linked list.

e ListChromosome
This is the abstract base class for ArrayListChromosome, LinkedListChromosome and VectorChromo-
some. It can’t be instantiated.

» LongChromosome
Chromosome of type long.

* NullChromosome
This is a dummy chromosome containing a null-value. It can be used for test and debug purposes.

 StringChromosome
Chromosome of type string.

» TreeChromosome
Chromosome containing a tree.

* VectorChromosome
Chromosome containing a vector. In most cases the ArrayListChromosome should be prefered over this
for performance reasons.

4.3 Creation of new Chromosome Types

For most application cases the predefined chromosome types will work fine. But a user could require a special
representation form that is tailored to his task. For that reason there is the possibility to create new chromosome
types. This section shows how this can be done.

As an example we will create a chromosome type that contains an integer number and a string (for what-
ever purpose this this may be good ...). All chromosomes extend the abstract class Chromosome in package
mss.ea.chr. This class has two abstract methods which must be implemented: clone() and equals(Object).

Pieces of the listing for our new chromosome class can be seen and are explained step by step below. First
we have to create a new class IntStringChromosome for our chromosome which extends the abstract base class.
The base class has already an instance variable for the chromosome object (co), but we will ignore that. Instead
we define our own instance variables:

public class IntStringChromosome extends Chromosome {
protected int integerPart ;
protected String stringPart ;

Listing 4.2: Chromosome Class with Instance Variables

Next we create a constructor for our class. Note that we have to call the constructor of the base class, but we
do not use the predefined chromosome object:

public IntStringChromosome(int i, String s) {
super(null);
integerPart = i;
stringPart = s;

13

10

10

Listing 4.3: Constructor

Other classes may want to access both instance variables, so we create two access methods:

public int getintegerPart () {
return integerPart ;
}

public String getStringPart () {
return stringPart ;
}

Listing 4.4: Access Methods

Now for the important things. We have to implement the two abstact methods of the base class. First is the
equals(Object) method. This method is used to compare this chromosome to another one. First we try to cast
the given object to the type of our chromosome — if that fails both objects can’t be equal and we return false. But
if this cast succeeds we can test the instance variable and and return true if they are equal.

public boolean equals (Object 0) {
try {
IntStringChromosome other = (IntStringChromosome) o;
if (integerPart == other. getintegerPart () &&
stringPart . equals (other. getStringPart ())) {

return true;

} else {
return false ;

} catch (ClassCastException cce) {
return false ;
}

}

Listing 4.5: Equals-Method

Finaaly we have to implement the clone() method. This method is used by some genetic operators to create
copies of the chromosome to work with.

public Object clone () {
return new IntStringChromosome(integerPart , stringPart);
}

Listing 4.6: Clone-Method

This finishes the process of creation of an own chromosome. The full listings of our new chromosome class
is shown below.

public class IntStringChromosome extends Chromosome {

protected int integerPart ;
protected String stringPart ;

public IntStringChromosome(int i, String s) {
super(null);
integerPart = i;
stringPart = s;

}

14

12

14

16

18

20

24

26

28

32

36

public int getintegerPart () {
return integerPart ;

}

public String getStringPart () {
return stringPart ;

}

public boolean equals (Object 0) {
try {
IntStringChromosome other = (IntStringChromosome) o;
if (integerPart == other. getintegerPart () &&
stringPart . equals (other . getStringPart ())) {
return true;

} else {

return false;

} catch (' ClassCastException cce) {
return false ;

}
}

public Object clone () {

}

return new IntStringChromosome(integerPart , stringPart);

Listing 4.7: Creation of a Chromosome Class holding an Integer and a String

15

N

~

Chapter 5

Score Evaluation

After we have seen how individuals can be created, now these individuals must be evaluated for thier quality.
This chapter introduces the term score as a quality appaisal for individuals. Furthermore it is shown how scores
are created and assigned to individuals. The last section deals with the comparison of individuals by scores.

5.1 Introducing the Term Score

In most publications the term fitness is used as a quality indicator for individuals. This is not wrong, it is just
not general enough. In eaLib there is a strong differentiation between the terms fitness and score . The score is
another word for the target objective value while the fitness is a relative quality indicator. This chapter deals with
the score, the fitness and its evaluation is introduced in the next chapter.

By looking at the example from the last chapter, it is quite clear what the target objective value is. It is just
the value for f(x,y). In most cases score values are numbers. Therefore several predefined classes for the score
are already provided by eaLib. There is an interface called Score in package mss.ea.core which defines some
useful methods for accessing a score. These are the methods isBetter(Score s), isEqual(Score s), isWorse(Score s)
and value(). The first three are used for comparing scores to each other while the last one is used for return the
underlying score object.

In package mss.ea.eval the user can find everything he needs for evaluating individuals. For to mention is
the abstract base class AbstractScore which gives a default implementation of the score interface. This class
implements the java interface Comparable, so the method compareTo(Object 0) must be implemented in all
subclasses.

Four predefined subclasses for scores already exist: DoubleScore , FloatScore , IntegerScore and LongScore
, holding appropriate primitive data types. For most applications these score definitions will do their job, but as
shown later, the user is able to define scores for special tasks as well.

5.2 Comparing Scores

How do we compare scores ? Have a look at the following piece of code:

FloatScore f1
FloatScore f2

new FloatScore ((float) 2.5);
new FloatScore ((float) 10.5);

System.out. println (“comparison_1._:." + fl1.compareTo(f2));
System.out. println (“comparison_2._:." + f2.compareTo(fl));

Listing 5.1: Score Comparison |

This would be the output:

16

10

-> comparison 1 - -1
-> comparison 2 - 1

In this piece of code it can be seen, that there is a default comparison mechanism already built-in. The score
f2 seems to be better than the score f1, that means a higher score is better. This may be useful in some application
cases, but in our example from the last chapter. In this example we are looking for the minimal target objective
value. Of course this default behaviour can be changed — by use of so called comparators. There is an interface
in package mss.ea.core called ScoreComparator . The implementation of this interface can be used to changed
the behaviour of such comparisons.

In package mss.ea.eval some default implementations of the interface can be found. The class ReverseScore-
Comparator fits our needs. We can changed the code from above to the following:

FloatScore f1 = new FloatScore ((float) 2.5);
FloatScore f2 = new FloatScore ((float) 10.5);
ReverseScoreComparator comp = new ReverseScoreComparator();

System.out. println (“comparison.1.:.” + comp.compare(fl, f2));
System.out. println (“comparison._1.:.” + comp.compare(2, f1));

Listing 5.2: Score Comparison |1
The output look like this:

-> comparison 1 : 1
-> comparison 2 : -1

Now we have the desired behaviour: a lower target objective value is now better than a higher one. The
comparator can be used to compare scores (and individuals, see next section) correctly for our example.

5.3 Score Assignment and Individual Comparison

Of course the evaluated score must be assigned to an individual. This is quite a simple task:

Individual i = new Individual ();
FloatScore f = new FloatScore ((float) 10.0);
i.setScore (f);

Listing 5.3: Assigning a Score to an Individual

The class Indivdidual also implements the Comparable-interface. So that task classes implementing the
interface IndividualComparator are used. A default implementation is available in package mss.ea.eval and
is called DefaultindividualComparator . This class uses internally a default score comparator for comparing
individuals by looking at their scores. The desired behaviour for our example can be reached by setting another
score comparator. This is shown in the next listing:

Individual i1 = new Individual ();
Individual i2 = new Individual ();

i1.setScore (new FloatScore ((float)2.5));
i2. setScore (new FloatScore ((float) 10.5));

ReverseScoreComparator sSComp = new ReverseScoreComparator();
DefaultindividualComparator iComp = new DefaultindivdualComparator(comp);

System.out. println (“comparison._1.:.” + iComp.compare(il, i2));
System.out. println (“comparison_1._:." + iComp.compare(i2, il));

Listing 5.4: Comparing Individuals by Use of Individual Comparators

17

N

~

o

10

12

14

16

10

14

16

18

20

This produces the desired output:

-> comparison 1 : 1
-> comparison 2 : -1

5.4 Creation of User-Defined Scores

There are application cases in which only one target objective value can’t be used. A multicriterion optimization
problem is an example for that. So a user could require a special score definition. This can also be done with
ealLib. This section shows how an own score class can be defined.

As an example we could require a score that is composed of two integer values. Each of them should be
as small as possible. So we first define a new class which holds the two values together. The class includes a
constructor and access methhods to the instance variables.

public class Doublelnteger {
int first , second;

public Doublelnteger (int f, int s) {
first = f;
second = s;

}

public int getFirst () {
return first ;

}

public int getSecond () {
return second;

}

Listing 5.5: Class Holding Two Integer Variables

Now we can create a new score class:

public class DoublelntegerScore extends AbstractScore {
DoublelntegerScore score;

public DoublelntegerScore (Doublelnteger di) {
score = di;

}

public Object value () {
return score;

}

public int compareTo(Object 0) {
DoublelntegerScore other = (DoublelntegerScore) o;
if (first < other. getFirst () && second < other.getSecond ()) {
return —1;

if (first > other. getFirst () && second > other.getSecond ()) {
return 1;

if (first < other. getFirst () && second > other.getSecond ()) {

18

24

26

28

10

14

16

return O;

if (first > other. getFirst () && second < other.getSecond ()) {
return 0O;
}
}

Listing 5.6: Score Class with Doublelnteger

With the above code the score class is complete. The comparison of two scores is done in a way that is usual
for multicriterion problems. A score is better than another if both parts are smaller, it is worse if both parts are
bigger and is equal to the other score if only one part is smaller.

5.5 Evaluation of Individuals

The last section of this chapter deals with the evaluation of individuals itself. The calculation of a valid score is
always problem-specific. Therefore it must be always implemented by the user. There can be only little help by
the toolkit for the support of this task. In eaLib the evaluation is done by classes derived from the abstract base
class ScoreEvaluation in package mss.ea.eval. This class extends the base class GeneticOperator and implements
the interface StreamProcessor , but the explaination of these classes will be left aside for the moment. If we look
at the API, we find out that ScoreEvaluation defines one abstract method: evaluate(Individual i). In this method
the calculation of the score is executed. If we want to implement the calculation of the score for our sphere
example, we have to derive a new class from this abstract base class and fill out the evaluate method:

public class SphereEvaluation extends ScoreEvaluation {

public Score evaluate (Individual ind) throws ScoreEvaluationException {
try {
ChromosomeSet set = ind.getChromosomeSet();
float fO = ((FloatChromosome) set.get (0)). floatValue ();
float f1 = ((FloatChromosome) set.get (1)). floatValue ();
float scoreValue = fO0 = fO + f1 = f1;
FloatScore score = new FloatScore (score);
ind. setScore (score);
return score;
} catch (Exception e) {
throw new ScoreEvaluationException (”score..evaluation .. failed ”);

Listing 5.7: Defining a Score Evaluation Class

The calculation works as follows: first the chromosome set from the individual is acquired. We know that our
individuals contain two chromosomes of type FloatChromosome , so we can extract the float values from them.
After that the score value is calculated and a new instance of a score class is created from this value. The instance
is assigned to the individual and is returned from the method.

We have created an evaluated individual with this piece of code. Note the try-catch block: this block throw
an exception as indicator if the calculation of the score fails.

19

Chapter 6

Fitness Scaling

We already explained the target objective value in the last chapter, now we continue with the fitness of individuals.
The fitness value is normally defined as a mapping of the score to a non-negative range of values. Therefore the
fitness is defined as a non-negative float value. The interface Fitness and the default implementation DefaultFit-
ness are already available for use. The use, the assignment and the creation of self-defined fitness classes works
much in the same way as for scores. For that reason they are not explained in more detail here.

The calculation of the fitness value is done in subclasses of the abstract base class FitnessScaling. The
calculation mechanism of much the same as in ScoreEvaluation, therefore we do explain it in detail once again.
But there is a difference to the score evaluation: several approaches for fitness assignment already exist. Some of
these methods are already implemented in eaLib and will be explained in the next sections.

In the following equations the fitness is indicated by F' and the score by.S.
6.1 Linear Scaling

Linear scaling is an approach that maps the score directly to the fitness. The fitness is calculated by the following
equation:

F=a-S+b (6.1)

The values for a and b can be specified in the constructor.

6.2 ReciprocalScaling

Reciprocal scaling is also a direct mapping:

a

F= 2
ST +c (6.2)
The values for a, b and ¢ can be specified in the constructor.
6.3 Logarithmic Scaling
Logarithmic Scaling is also a direct mapping:
F=a-logS (6.3)

The value for a can be specified in the constructor.

20

6.4 Exponential Scaling

Exponential Scaling is also a direct mapping:

F=(a-S+b)*

The values for a, b and & can be specified in the constructor.

6.5 Linear Ranking Scaling

to be written . ..

6.6 Non-linear Ranking Scaling

to be written . ..

21

(6.4)

Chapter 7

Selection M echanisms

To be written . ..

22

Chapter 8

Recombination of Individuals

All recombination operators are contained in the package mss.ea.rec. The toplevel class is the abstract base class
Recombination, which does not not provide any functionality at this moment. This class has two subclasses,
IndividualRecombination and ChromosomeRecobination. The first one is the class responsible for recombining
whole individuals. The other one is an abstract base class for various recombination operators working with
different data types.

8.1 Recombining Bitvectors

Section still missing.

8.2 Recombining Real or Integer Valued Variables

Section still missing.

8.3 Recombining Arrays

8.3.1 Multipoint Array Recombination

This is an implementation of the well-known multipoint recombination. This operator swaps sections of arrays
between selected points. Parameters to this operator are:

« intersectionNumber — the number of intersection points for the recombination. The selection of the points
itself is random-based.

« intersectionPoints — an integer array with the intersection points.

Examples for multipoint crossover is shown in figure ??. The left side shows the recombination with the inter-
sectionNumber set to 1, in the right part the intersection points were set to [2, 7].

8.4 Recombining Lists

Section still missing.

8.5 Recombining Strings

Section still missing.

23

Chapter 9

Mutation of Individuals

All mutation operators are contained in the package mss.ea.mut. The toplevel class is the abstract base class
Mutation, which does not not provide any functionality at this moment. This class has two subclasses, Individ-
ualMutation and ChromosomeMutation. The first one is the class responsible for mutating whole individuals.
The other one is an abstract base class for various mutation operators working with different data types.

9.1 Mutating Bitvectors

Section still missing.

9.2 Mutating Real or Integer Valued Variables

Mutation of real or integer valued variables is done using the same scheme for the four supported data types
Integer, Long, Float and Double. Each data type provides the same mutation mechanisms in it’s particular range
of values. Representative for all data types only the mutation for float numbers are explained in the following
sections.

9.2.1 FloatStepMutation

The FloatStepMutation (FSM) is a simple mutation of float numbers. The mutation is done by adding a random
float number f,. to the original float number f. representing the chromosome. The class requires the user set a
bound b for f,.. The generated random number is in the range between the bound and 0.0. So the mutation can
be written as:

[0,] ¥ b>0,

[,0] V b<0. 9.1)

fc:fc+fr with fre{

The value of b is set to a default value of 1.0 in case that b is not given in the constructor. The default mutation
propability is set to 0.05, if not given.
9.2.2 FloatRangeMutation

The FloatRangeMutation (FRM) works in a similiar way to FSM. The mutation is also done by adding a random
float number £, to the original float number f.. The difference is, that f,. is in a range, which must be specified
by a lower and an upper bound (b; and b,,). Mathematically the mutation can be expressed like this:

fe=Ffe+ fr with b < f,. < by (9.2)
The default values for b; and b, are —1.0 and 1.0, which are also used in case that b, < b;. The default

mutation propability is 0.05.

24

9.2.3 FloatRelativeRangeMutation

The FloatRelativeRangeMutation (FRRM) works the same way as FRM with the difference that the mutation
range is given as a percentage p. So the mutation can be expressed in a similiar way as FRM:

fc:fc+f7' with _fc'p<fr<fc'p (93)

The default value for p is 0.1, which is also used in case of a given negative value. The default mutation
propability is 0.05.

9.3 Mutating Arrays

9.3.1 ReverseArrayMutation

This operator reverses the sequence of the objects in the array. Optionally a reversal of a part of the array is
possible. Parameters to this operator are:

* propability — the propability that the mutation takes place.

« rangePercentage — the number of elements to be reversed. Valid values are between 0.0 and 1.0. Example:
a value of 0.5 on an array with 10 elements selects a sequence of 5 elements and reverses these. The other
5 elements stay untouched.

* lower bound/upper bound — the lower and upper bound of the array. Elements between the bounds are
reversed, all other elements stay untouched.

The mechanism is shown in figure 9.1. The left side shows the mutation of the whole array, in the right part the
value of rangePercentage is set to 0.5.

[alefcfofe[rlofn]afx] [a[e[c[ofe[Flen]s]K]
[x[o[n]c[rle[ofclefa] [a[s[c|F[e[o[c[n]a]x]
Mutation over whole array (default) Mutation with range 50 %

Figure 9.1: Reverse Array Mutation.

9.3.2 RotateArrayMutation
This operator rotates the contents of an array. Parameters to this operator are:

« propability — the propability that the mutation takes place.

* percentage — the number of single rotations that are performed during the mutation. Valid values are
between 0.0 and 1.0.

» number — the number of single rotations that are performed during the mutation.

The mechanism is shown in figure 9.2. The left side shows the mutation with the value of number set to 1, in the
right part the value of percentage is set to 0.5.

25

[alefclofefrleu]afx] [afe[c[o]elrfe]n]a]«]

& d

[<[afefclofefrlefn]s] [ele]n]a]x]a]e]c]o]e]

Mutation with number =1 Mutation with percentage =50 %

Figure 9.2: Rotate Array Mutation.

9.3.3 ScrambleArrayMutation
This operator scrambles the whole array oor just a part of it. Parameters to this operator are:
* propability — the propability that the mutation takes place.

* percentage — percentage value of the number of elements to be scrambled. Valid values are between 0.0
and 1.0.

* number — the number of elements to be scrambled.

An example is shown in figure 9.3. The positions of randomly selected elements from the array are scrambled.

[alelcfolefrlefn]afx] [alefcofe[rle[n]a]K]
[«lc[afe]rnlefclo]s] [ale[n|ofefc]c|c]|a]F]
Mutation with number = 10 Mutation with percentage =50 %

Figure 9.3: Scramble Array Mutation.

9.3.4 ShiftArrayMutation

This operator will cut out random elements, shift the remaining elements upwards and append the elements, that
were clipped, to the end of the array. Parameters to this operator are:

« propability — the propability that the mutation takes place.

* percentage — percentage value of the number of elements to be cut out. Valid values are between 0.0 and
1.0.

« number — the number of elements to be cut out.

An example is shown in figure 9.4. In the left part two elements (’E’ and "H’) were cut out. In the right part 50%
of the elements were cut out (5 elements: *C’, ’D’, ’F’, "H” and *J’).

9.3.5 SubstitutionArrayMutation

This operator will replace randomly selected elements with elements selected randomly from a given substitution
list. Parameters to this operator are:

26

[alefclofefrleu]afx] [afe[c[o]elrfe]n]a]«]

& d

[alefcfofefefofrfefn] [afe]elc]c]clo]en]s]

Mutation with number = 2 Mutation with percentage =50 %

Figure 9.4: Shift Array Mutation.

* propability — the propability that the mutation takes place.

* percentage — percentage value of the number of elements to be replaced. Valid values are between 0.0 and
1.0.

» number — the number of elements to be replaced.

An example is shown in figure 9.5. The substitution pool is shown on the right side. Five elements of the array
were cut out and replaced by randomly selected elements from the substitution pool.

[alefclolefrle]n]s]k]

|A|B|M|D|L|G|M|L|E|M| <:I

Mutation with number =5 Substitution Pool

Figure 9.5: Substitution Array Mutation.

9.3.6 SwapArrayMutation

This operator swaps two randomly selected elements in the array. Parameters to this operator are:
* propability — the propability that the mutation takes place.

An example is shown in figure 9.6. The positions of two randomly selected elements of the array are swapped.

[alefclolefrleln]a]k]

b

[alefn]ofefrlelc]afk]

Figure 9.6: Swap Array Mutation.

27

9.4 Mutating Lists

9.4.1 ReverseListMutation

This operator works in the same way as ReverseArrayMutation. See the appropriate section for more information.

9.4.2 ScrambleListMutation

This operator works in the same way as ScrambleArrayMutation. See the appropriate section for more informa-
tion.

9.4.3 SwapListMutation

This operator works in the same way as SwapArrayMutation. See the appropriate section for more information.

9.5 Mutating Strings

Section still missing.

28

Chapter 10

Algorithm Creation

This chapter gives an overview over the creation of algorithms.

10.1 Individual Streams

First of all we will introduce the term individual stream. Most of the operators of the library rely on such streams,
so their understanding is essential.

Almost all genetic operators are working on a collection of individuals. For that reason an abstract data
structure has been defined which is specified by the interface IndividualStream. A stream is nothing else than a
collection of individuals. It provides methods for adding and removing individuals as well as for iterating over
the stream. A stream contains an internal pointer, so insertion at the end of the stream or at the position of the
pointer is possible. The pointer is also used for iteration, as shown in the next listing:

public void printStream (IndividualStream stream) {
for (stream. reset (); stream.hasNext ();) {
Individual ind = stream.next ();
System.out. println (ind);
}

Listing 10.1: Iteration over an individual stream

Individual stream classes are specified by the interface IndividualStream. This interface defines several methods
for putting individuals on the stream, removing them from the stream and iterating over all individuals contained
in the stream. The underlying data structures are hidden from the user. There are three default implementa-
tions of the interface: ArrayStream, ListStream and VectorStream with the appropriate underlying data structures
ArrayList, LinkedList and Vector. For most application cases the ArrayStream is useful because it provides the
highest performance.

Note : Itis likely, that the interface IndividualStream will be replaced in the future by the interface Individual-
Collection which is derived from the Collection interface in the java.util package. Changes in most of the classes
will be necessary (this means a lot of work), so the use of individual stream will be OK for foreseeable future.

10.2 Algorithm Components

All algorithms (independent from their type) can be build from independent operators. These operators produce
and consume data or process data in a particular way. Every algorithm component can be assigned a particular
category. This section introduces these categories. A user of ealib normally does not get in touch with the
communication of these components, but he should know about their sense to be able to create algorithms.

29

10

10.2.1 Sources

A source is an algorithm component which produces data. Every source has exactly one output and no input.

10.2.2 Sinks

A sink is able to store data. That’s why sinks have exactly one input and no output.

10.2.3 Connectors

Connectors transform data in some way. They have exactly one input and exactly one output.

10.2.4 Forks

Forks are able to split up data. They have exactly one input and an arbitrary number of outputs. Forks can be
differentiated into routers and multicasters. Routers route the incoming data from the input to one of the outputs.
In contrast multicasters send the incoming data to all of the outputs.

10.2.5 Mergers

Mergers are the opposite of forks. They have an arbitrary number of inputs and excatly one output. They can be
differentiated into collectors and combiners. Collectors react on every incoming data from an input. Combiners
wait for every input to deliver data.

10.2.6 Conduits

Condauits are the general form of algorithm components. They can have an arbitrary number of inputs and outputs.

10.3 Turning Genetic Operators into Algorithm Components

This section explains how genetic operators are turned into algorithm components. Every genetic operator can be
assigned to one of the components introduced in the last section.

10.3.1 Initialization

Let’s start with the initialization. The initialization of a population in a genetic algorithm has the task to create
(mostly random) individuals. The form of the individuals are problem-specific, so in most cases the user is forced
to implement his own initialization operator.

Imagine individuals which represent a solution of a mathematical function in three dimensions. For that
example an individual contains two chromosomes of type float. An appropriate operator must produce valid
individuals containing these chromosomes. The following listing shows an operator providing this task.

public class Mylnitialization extends Initialization {
public Mylnitialization (int numberOfindividuals) {
super (numberOfindividuals);

public ChromosomeSet createSet() {
ChromosomeSet set = new ChromosomeSet();
FloatChromosome f0 = new FloatChromosome(RandomuUtil.randomFloat(—10.0, 10.0));
FloatChromosome f1 = new FloatChromosome(RandomUltil.randomFloat(—10.0, 10.0));
set.add(0);
set.add(f1);
return set;

30

Listing 10.2: Creating an Intialization Operator

There is an abstract base class for the initialization task called Initialization in package mss.ea.ini. We derive
our own class from this abstract base class (line 1).

31

Chapter 11

Debugging Facilities

To be written

32

Chapter 12

A Look intothe Future

This chapter provides a look into the magical glass sphere to figure out what features will be or could be imple-
mented in future versions of eaLib. The current version is in an experimental state, so there are probably many
bugs lurking out there. The task of fixing issues has got the highest priority at the moment. Furthermore some
more examples should be implemented to show various features of the library. The next few lines contain some
ideas what to implement in future versions:

« Different Population Models: The common case for a population is holding all individuals in a vector.
Recombination can be done between randomly chosen individuals. But there are other population models,
for instance holding individuals in a matrix, allowing recombination only between neighbours. The core
functionality for that already exists, so this feature could be implemented only within a short time.

» Migration between populations: it is already possible to split up and merge individual streams, so an
extension in this direction should be easy to implement.

« Parallelization: The longer the calculation of a score lasts, the more performance could be achieved with
disposing these calculations to different computers within a local network. To implement that, some knowl-
edge about handling network connections is necessary. | do not have this knowledge, so this task is likely
to move further backwards in the development process. Although the foundations are laid (with a working
message passing system), there is currently no timeframe for that.

» Resource Sharing Model: An algorithm can be run using different populations sharing resources. This can
improve the search space coverage and the convergence of the algorithm. For me this is quite an important
feature.

» Graphical User Interface: By pressing the genetic operators into the scheme of Java Beans, there is the
possiblility to create a GUI, that makes it possible to put algorithms together by drag and drop (or click and
place or whatever ...).

33

Chapter 13

Licenselssues

This chapter deals with the licensing conditions of eaL.ib.

13.1 The GNU General Public Licence

The following is the text of the GNU General Public Licence, under the terms of which this software is dis-
trubuted.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

13.1.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this service
if you wish), that you receive source code or can get it if you want it, that you can change the software or use
pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And
you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

34

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its recipients
to know that what they have is not the original, so that any problems introduced by others will not reflect on the
original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary.
To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or not licensed at
all.

The precise terms and conditions for copying, distribution and modification follow.

13.1.2 Terms and conditions for copying, distribution and modification

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The “Program”, below, refers to
any such program or work, and a “work based on the Program” means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim
or with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the

35

distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code, which must be dis-
tributed under the terms of Sections 1 and 2 above on a medium customarily used for software inter-
change; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

36

7.

10.

11.

12.

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

If the distribution and/or use of the Program is restricted in certain countries either by patents or by copy-
righted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General Public License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distribution conditions are
different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

Because the Program is licensed free of charge, there is no warranty for the Program, to the extent
permitted by applicable law. except when otherwise stated in writing the copyright holders and/or
other parties provide the program “as is”” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the Program is with you. Should the
Program prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event unless required by applicable law or agreed to in writing will any copyright holder, or any
other party who may modify and/or redistribute the program as permitted above, be liable to you
for damages, including any general, special, incidental or consequential damages arising out of the

37

use or inability to use the program (including but not limited to loss of data or data being rendered
inaccurate or losses sustained by you or third parties or a failure of the Program to operate with
any other programs), even if such holder or other party has been advised of the possibility of such
damages.

END OF TERMS AND CONDITIONS

13.1.3 Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file
to most effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a
pointer to where the full notice is found.

<one line to give the program”’s name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type “show w”.
This is free software, and you are welcome to redistribute it

under certain conditions; type “show c” for details.

The hypothetical commands ‘show w’ and “‘show ¢’ should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than ‘show w’ and “‘show c’; they
could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
“Gnomovision”’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Library General Public License instead of this License.

38

13.2 eaLib commercial license
LICENSE AGREEMENT FOR COMMERCIAL APPLICATIONS

This is the preliminary non-GPL license for eaLib. This can be used for commercial applications of the
software. This license will become valid in case that eaLib becomes available as a commercial product in the
future.

Following are a draft of the current terms of this non-GPL license agreement. Comments are welcome -
particularly those of the legal counsel of interested purchasers.

1. Preamble
Please read this license agreement (called the ”Agreement”) carefully. Your use or installation of the
software or any related documentation (called the ”Software”) indicates your acceptance of the following
terms and conditions. If you do not agree to these terms and conditions, you may not install or use the
Software.

eaLib is dual licensed, under both the GPL and the following non-GPL license.

The GPL license allows you to freely distribute eaLib within GPL software. This means that both source
code (java files) and compiled code (class or native code) of the software must be available, and that any
person you distribute it to has these same rights. Since the GPL kind of “open source” does not suit
everyone (notably for most commercial software), eaLib is also available under the following non-GPL
license.

This non-GPL license relieves you of all GPL obligations, apart from clause (7), which preserves the open
source maintenance benefits of sharing bug-fixes and of peer review of enhancements.

This non-GPL license imposes the further restriction, beyond the GPL, of clause (6), which prevents you
from competing with eaLib (eg selling eaL.ib itself, or a competing product, or of "forking” the project).
It also restricts you to distribute eaLib only within a specifically nominated “"named product”, or named
product suite.

This non-GPL license does not allow you to give other people the right to distribute eaLib. It only gives
you the right to distribute. This means that eaLib cannot be converted into LGPL, BSD or Apache style
licenses etc via this license, or distributed under such a license.

2. Definitions
The ”Software” is the eaLib software, including, but not limited to, the eaLib Library, examples and any
included documentation.

A "commercial use” is:

(1) the use of the Software or any work derived from the Software in connection with, for or in aid of the
generation of revenue, such as in the conduct of Licensee’s daily business operations; or

(2) any copying, distribution or modification of the Software or any work derived from the Software to
any party where payment or other consideration is made in connection with such copying, distribution
or modification, whether directly (as in payment for a copy of the Software) or indirectly (including but
not limited to payment for some good or service related to the Software, or payment for some product or
service that includes a copy of the Software "without charge™).

3. Ownership and License
The Software is owned by the Institute of Electronic Circuits and Systems (ESS), which is part of the
Technical University of Ilmenau, Germany or one of its subsidiaries and is copyrighted and licensed.

4. Warranty Disclaimer and Limitation of Liability
ESS licenses the Software to you on an "as is” basis, without warranty of any kind. ESS hereby expressly
disclaims all warranties or conditions, either express or implied, including, but not limited to, the implied

39

warranties or conditions of merchantability and fitness for a particular purpose. You are solely responsible
for determining the appropriateness of using this Software and assume all risks associated with the use of
this Software, including but not limited to the risks of program errors, damage to or loss of data, programs
or equipment, and unavailability or interruption of operations. Some jurisdictions do not allow for the
exclusion or limitation of implied warranties, so the above limitations or exclusions may not apply to you.

ESS will not be liable for any direct damages or for any special, incidental, or indirect damages or for any
economic consequential damages (including lost profits or savings), even if ESS has been advised of the
possibility of such damages. ESS will not be liable for the loss of, or damage to, your records or data, or
any damages claimed by you based on a third party claim. Some jurisdictions do not allow for the exclusion
or limitation of incidental or consequential damages, so the above limitations or exclusions may not apply
to you.

. Distribution of eaLib
This license grants you a non-exclusive, non-transferable, perpetual license, to distribute the Software
within a named product or product suite, in return for a one time fee.

. Competition with eaLib

This named product or product suite of yours must not compete with the Software. The Software must be
used only as a minor component, embedded, in a supporting role, incidental to the primary function of your
named product or product suite. The Software API (or functional equivalent) must not be exposed to the
user of your product. You may not compete with the Software.

. Modification of eaLib
You have the right to modify the Software (eg: bugfixes, enhancements etc); however, any such changes
must be relayed back to ESS, and split copyright in them assigned to ESS.

Explanatory Note: ”Split copyright” means that both you and ESS acquire the same rights to the changes, so
that ESS may incorporate the changes back into JSX, without mixing copyright ownership. Incorporating
changes allows wide testing and peer review of your changes, and for further enchancements to be built on
top of yours. You can forget about your bug fix or enhancement - you do not need to re-apply it to future
releases, or to maintain it. You will be credited for your contribution, and of course, will also recieve the
bug fixes etc from other licensees under this term.

40

Bibliography

[Ant]
[GJS96]

[Golgg]

[JDK]
[9SX]
[Jun]

[Log]
[Rec73]

[Xer]

Ant. http://jakarta.apache.org/ant/index_html.

James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specification. Addison Wesley, Paris,
Reading, 1996.

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison
Wesley, Reading, Massachussetts, 1989.

Java™?2 sdk, standard edition 1.3. http://java.sun.com/j2se/1.3.

Jsx java serialization to xml. http://www.csse.monash.edu.au/"bren/JSX.
Junit. http://www. junit.org.

Log4j. http://jakarta.apache.org/log4j/docs/index._html.

Ingo Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der biologis-
chen Evolution. Fromman-Holzboog, Stuttgart, 1973.

Xerxes java parser. http://xml.apache.org/xerces-j/index.html.

41

42

| ndex

algorithm components, 28
algorithm creation, 28

conduits, 29
connectors, 29

data types, 6
Defaultindividual Comparator, 16
DoubleScore, 15

fitness, 15
FloatChromosome, 18
FloatScore, 15

forks, 29

genetic operators, 29
GeneticOperator, 18

Individual

class, 16
individual

comparison, 16, 18
individual stream, 28
initialization, 29
installation, 7

binary release, 7

requirements, 7

source release, 7
IntegerScore, 15

license
commercial, 38
GPL, 33
license conditions, 33
LongScore, 15

mergers, 29
MPArrayRecombination, 22

Multipoint Array Recombination, 22

Recombination, 22
Arrays, 22
Bitvectors, 22
Lists, 22

43

Strings, 22
ReverseArrayMutation, 24
ReverseListMutation, 27
ReverseScoreComparator, 16
RotateArrayMutation, 24

Score

interface, 15
score

assignment, 16

comparison, 15

term, 15

used-defined, 17
ScoreComparator, 16
ScoreEvaluation, 18
ScrambleArrayMutation, 25
ScrambleListMutation, 27
ShiftArrayMutation, 25
sinks, 29
sources, 29
StreamProcessor, 18
SubstitutionArrayMutation, 25
SwapArrayMutation, 26
SwapListMutation, 27

