
Sean Luke
Gabriel Catalin Balan

 Liviu Panait
Claudio Cioffi-Revilla

Sean Paus

MASON A Java Multi-agent
Simulation Library

George Mason University’s
Center for Social Complexity and
Department of Computer Science

Multi Agent Simulation Of
Neighborhoods... or Networks...
or something...

Fast, portable, multi-agent core
in Java, plus visualization tools
and media tools

Designed for both artificial
intelligence and computational
social science agent-based
modeling. Dual-purpose is
intentional for cross-fertilization.

MASON

• Why MASON exists
1. Produce new discoveries (Galileo and Smarr)
2. Replicate prior results
3. Provide new computational facilities (von Neumann)
4. Model new agent architectures
5. Inspire & implement new formalisms
6. Open new research frontiers (Bronowski)
7. Inspire future improvements

• Positive evaluation of MASON’s predecessors by
these standards.

*BTW: How does/should CSS formally evaluate a simulation environment? We

know how to evaluate concepts, hypotheses, models, theories; but
simulators?

The Big Picture

MASON design goals
Large numbers of simulations
Guaranteed duplicatable scientific results
High degree of modularity and flexibility
Small, easy to understand core model
Separate visualization tools

The Big Picture

The Big Picture

• We present MASON as an evolution stemming from a
tradition of inspiring precursors: Swarm, Ascape, Repast

• MASON is a joint project by George Mason
University’s Center for Social Complexity (C. Cioffi)
and the Evolutionary Computation Lab (S. Luke).

• “Vertical team” approach: Faculty & student
involvement from GMU (& TJ)

MASON

General-purpose, single-process,
discrete-event simulator
Efficiently supports large
numbers of agents
Applications as diverse as

Social complexity
Physical Modeling
Abstract Agents
AI, Machine Learning

MASON Features

Highly modular, layered
architecture
Portable, guaranteed
duplicatable results across
different platforms
Total separation of model from
visualization

Dynamically add, change,
remove visualization
Cross-platform
checkpointing, recovery

MASON Layered Architecture

Utilities
Core model library
Visualization tools
Custom simulation layers
Simulation applications

MASON
Model

Library,
Utilities

(Optional)
MASON GUI Tools

(Optional)
Domain-
Specific

Simulation
Library,
Tools

Applications

Layer Interactions

Simulation Model

Discrete Event Schedule
(Representation of Time)

Fields
(Representations of Space)

Holds
Agents

Any
ObjectHold

Utilities

Visualization and GUI Tools

Controllers
(Manipulate the Schedule)

2D and 3D Displays
2D and 3D Portrayals
(Draw Fields and the

Objects they hold)

Disk
Checkpoints

Hold

Checkpointing and Recovery

Visualization Tools

Model Running
on Back-End

Platform Checkpointed

Model Running
under Visualization
on User's Platform

Disk

Recovered

Checkpointed

Recovered

2D, 3D Fields
Hexagonal, Toroidal
Discrete, Continuous
Network Fields

(Directed Graphs)
2D and 3D Visualization

MASON Neighborhoods

MASON...
Model - visualization separated
3D models and displays
Faster, especially on MacOS X
Cleaner, smaller

RePast has built-in...
GIS, Excel import/export,
charts and graphs, SimBuilder

In MASON these would be
in the “custom simulation
library” layer

Differences with RePast

 MASON doesn’t have... (yet!)

RePast uses linearized
array classes; MASON
uses Java arrays
RePast’s schedule uses
doubles, MASON’s uses
longs with double
extensions
RePast allows objects to
be moved by the mouse

Ant Foraging
Micro Air Vehicles
HeatBugs

to compare with RePast, Swarm
Anthrax Dispersion in Human Body

port of existing Swarm simulation

Test Cases

Ant-Inspired Foraging

Second International Workshop
on the Mathematics and
Algorithms of Social Insects
Problem domain involving a
large number of agents
Task: locate the food source and
repeatedly carry food items back
to the nest
Agents use pheromones to mark
trails connecting sites

Ants: MASON Setup

Obstacles
(DoubleGrid2D)

Pheromones for
direction to nest
(DoubleGrid2D)

Pheromones for
direction to food
(DoubleGrid2D)

Agents (with
or without food)
(SparseGrid2D)

Evaporation & Diffusion Agent

Birth-Control Agent

Ant agents are created in the nest
Ant agents die after a number of time steps
An additional simulation agent manages the
creation of new foraging agents when
needed

Learning Foraging Behaviors

Hooked up MASON
with ECJ evolutionary
computation library
ECJ spawns large
numbers of MASON
simulations to evaluate
performance of
candidate ant behaviors

Small (under 1 meter)
unmanned aerial
vehicles

Inexpensive

Large “swarms” of
vehicles for cooperative
surveillance

Micro-Air Vehicles

Unmanned Aerial Vehicles (UAVs) are
ordinarily operated by remote control: team
of 6 people per UAV
But a swarm of 1,000 MAVs = 6,000
people, plus coordination between them!

MAV swarms must be autonomous
Programming autonomous behaviors by
hand is hard

MAV Challenges

Use machine learning to develop
autonomous MAV swarm behaviors
Evolutionary computation, reinforcement
learning
Requires:

EC system to invent behaviors
Fast simulator run on many machines in
parallel to test behaviors

Learn the MAV Behaviors

10 – 10,000 MAVs

Continuous 2D Field in
MASON

Connected to EC system
Evolved behaviors to
perform maximum
coverage of desired
areas without crashing
into one another

MAV Swarm Simulation

Evolutionary Computation Laboratory
Department of Computer Science
http://cs.gmu.edu/~eclab/
Center for Social Complexity
http://socialcomplexity.gmu.edu
(Will be up immediately after Agent2003)
...or ask us during conference to burn a CD

Where to find MASON

Sean Luke
Gabriel Catalin Balan

 Liviu Panait
Claudio Cioffi-Revilla

Sean Paus

MASON A Java Multi-agent
Simulation Library

George Mason University’s
Center for Social Complexity and
Department of Computer Science

